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ABSTRACT 

To date many methods have been developed to expand measured 
mode  shapes from a limited number of sensors up to the full set of 
degrees of freedom (DOFs) of an analytical FEM model. Previous 
papers have evaluated the accuracy of these techniques on actual 
experimental data [l]. IIowever. many of these methods are 
limited to the expansion of mode shapes, and often require a priori 
knowledge  of  the measured and analytical modal frequencies, as 
\vel1 as pairings between the experimental and analytical modes. 
These  methods cannot be applied to the general case of  a measured 
time history with multi-mode. transient or steady-state response 
information. 

A class of methods for estimating the full state vector from a 
limited set of measurements, typically used in conjunction with a 
full-state feedback controller, is an attractive approach for 
expanding measured time histories. One such method, known as 
the Kalman filter [2], is a recursive linear state estimator based on 
least-squares minimization, and can be applied even when 
measured time  histories  are noisy or the system dynamics are not 
known precisely. This paper will explore the methodology of the 
Kalman filter, and the deterministic counterpart, the Luenberger 
observer, and evaluate their accuracy on an analytical simulation. 

NOMENCLATURE 

x state  vector 

y measurement  vector 

v noise  vector 

A,,,C,, discrete  time  system  matrices 

R = E(V'V) noise  covariance  matrix 

i estimated  state  vector 
estimated  measurement  vector 

K feedback  gain  matrix 

P = E((X - %>"(x - 2)) state  error  covariance  matrix 

1. INTRODUCTION 

Although static analyses typically use detailed and high- 
resolution finite element models, reduced-order models  (ROM) 
are popular for dynamic analyses. This is primarily due to the 
engineering and computational costs of working with models 
having hundreds, to hundreds of thousands of  DOF. Reduced 
order models are justifiable in many cases because 1 )  high 
frequency modes are usually inaccurate in full size models, 2) 
essential dynamic responses can often be captured using a small 
number of normal modes. Furthermore, active  control design 
algorithms may not be robust enough to handle large size models, 
and hence require the use of ROMs, with the understanding that 
closed-loop performance may need to be checked using the  full 
order model. 

Model reduction techniques for structural dynamics can be 
assigned to one of  two  groups according to whether truncation 
takes place in the physical coordinate space  (DOFs or nodal 
points eliminated) or in a generalized coordinate space. 
Guyanhons reduction[4,5], IRS reduction 161, as well as using 
FE models with lower spatial detail are  examples  of the first, 
while normal-mode modal truncation, Krylov or Ritz-vector [7] 
based models, or balanced gain reduction [SI are examples  of  the 
latter. 

The inverse procedure is the expansion of  the reduced model 
results up to the full-size model. This is  a familiar step in modal 
analysis where the solution in generalized coordinates is projected 
to physical coordinates by premultiplication by the mode shape 
matrix. Likewise, experimentally measured mode  shapes can be 
expanded by various techniques from the measured a-set DOF to 
the unmeasured o-set DOFs. This  is  a necessary step for spatially 
complete mode shape animation or orthogonality and cross- 
orthogonality checks using the FE model mass and stiffness 
matrices. Previous  studies  have  shown how to cast these mode 
shape expansion methods into the framework  of minimum-norm 
operations and assessed their accuracy on experimental data [ I ] .  
These methods operate solely on a mode-by-mode basis, i.e.,  the 
objective is to expand eigenvectors, not to expand  a whole time 



history containing responses in various modes. For the Guyan, 
IRS, and Ritz model reduction methods, the reduction 
transformation matrix can be used to project time histories at the 
reduced DOFs onto the omitted DOFs, but this approach can be 
inaccurate. Problems will arise in projecting measured 
acceleration time histories to unmeasured nodes and then 
visualizing structural motions as accelerations, as the high- 
frequency acceleration components will distort the deflected 
shapes, unless the time histories contain only a single frequency. 
On the  other hand, if noisy acceleration measurements are double- 
integrated to displacements, there is a possibility that low- 
frequency noise will be the largest magnitude in the integrated 
signal, making the projections meaningless. This is especially 
relevant when the measured motions of interest are just above the 
background noise of  the instrumentation. 

This paper investigates a  type of expansion process that potentially 
has a more general application to transient responses. The 
animation of the complete structural motion during transient 
rcsponses can give insight into the structure's behavior during 
normal service  conditions (operational deflected shapes for 
example), wave propagation events, or dynamic  'snap' events that 
result from sudden changes in configuration. Especially attractive 
would be the visualization of the shape just after a snap event has 
taken place, in order to determine the source location. This is one 
aspect of current interest in the analysis of the IPEX experimental 
data 131. Additional benefits of these techniques include 
generating smooth estimates of structural motions from noisy 
measurements, and estimating the motions of unmeasured DOFs 
for nonlinear structures. 

The class of expansion techniques studied here are known as state 
estimators. The first method considered is the deterministic 
Luenberger full-state observer, and the second is the Kalman filter. 
These ideas have been in use for estimating the state vector of 
dynamical systems in active control since the early 1960's, when 
published by Luenberger and Kalman [9],[2]. Their 
implementation has not been wide in the structural dynamics 
community as  of yet. These techniques arc investigated to see how 
successful they might be for estimating the complete displacement 
vector of a realistic space structure when only a small number of 
acceleration measurements are made, when the motions are in the 
pm range, and the responses are of a transient nature. 

2. STATE  ESTIMATION  TECHNIQUES 

The state estimation problem consists of constructing an estimate 
of  the  time behavior of  a dynamical system from potentially noisy 
measurements of  some  of  the states or possibly indcpendent linear 
combinations  of the states. We consider the discrete-time 
difference equations  of the system and its discrete-time 
measurement equation: 

in which the 2n-dimensional state vector is x, the m-dimensional 
measurcrncnt vector is y, and v is the measurement noise vector 
with covariance matrix W. In practical applications, the 
measurements consist  of accelerations, which are state derivatives, 
and the m-by-n matrix Cd is computed from the finite element 
mass, damping, and stiffness matrices. An important restriction in 

thc development which follows is that the dynamical system of 
Eqns (1) & (2) is completely state observable [lo]. 

Deterministic Observer 
The system is assumed to be completely deterministic  and hence 
the measurement noise is taken as zero. Assume that an estimate 
of  the  state at any time i is available asi ( i )  , so that an estimate 
of the measurements is available from Eqn (2). From the actual 
measurements and the estimated measurements, a measurement 
error can be computed. The full-state observer is formed by 
multiplying the measurement error vector by a gain matrix and 
feeding it back into the state equation. 

?( ;+I )  = Ad?(;) + K(y(i) - si)) = Ad%(;) + K(y(i) -C,%(i)) ( 3 )  

?i(i + I )  = (A,  - KC,)i(i) + Ky(i) (4) 

Eqn (3) is the fundamental equation for both the deterministic 
observer and the Kalman filter and it is evident that the estimator 
is both recursive and linear in the measurement vector. With a 
little algebra it can be shown that the time behavior of the error 
vector (the  true state minus the estimated state) is determined by 
the eigenvalues of the matrix (Ad -KCd). Therefore, one can 
choose the estimator performance by choosing the measurement 
error feedback matrix, K. Furthermore, given a completely 
observable system. all eigenvalues of  the system can be placed in 
arbitrary locations. 

Design of the observer is carried out by specifying eigenvalue 
locations using engineering judgement, then the performance is 
checked through simulation. Eigenvalue locations can be 
adjusted until desired performance is achieved. Although it is 
true that under certain conditions the eigenvalues can be placed at 
arbitrary locations, it is usually left to engineering judgement to 
find the best locations. The gain matrix that achieves  the desired 
eigenvalue locations can be calculated from the MATLAB 
function place. Finally, note from Eqn (4) that any noise in the 
measurements will be amplified by the gain matrix K, so that the 
larger the gain matrix (the faster the eigenvalues), the larger the 
amplification of the noise. 

Kalman Filter 
The Kalman filter is an optimal estimator that seeks a minimum 
variance of the state error vector, given u priori knowledge  of  the 
measurement noise statistics. In addition to the measurement 
noise statistics, which are assumed to be white with covariance 
matrix, R, we define the  state error covariance matrix P. The 
differences between the deterministic observer and the Kalman 
filter lie in how the gain matrix K is calculated, and that the state 
estimate at i+l is conditioned on the measurement at i+l. The 
essential equations of the filter are: 

Eqn (6) shows how the gain matrix is a function of both the 



covariance of the error vector and the statistics of the measurement 
noise. 

State estimation is a somewhat involved topic with  an interesting 
and illustrious history and only the essential equations and ideas 
have been presented here. Additional information on both the 
Luenberger observer and the Kalman filter can be found in 
textbooks such as[ IO]. 

3. EXAMPLE 

The second Interferometry Program Experiment (IPEX-11) is a 
space flight experiment investigating the microdynamic behavior 
of  a representative deployed  truss structure. This experiment 
serves as a  technology demonstration for the planned space 
telescopes in NASA's Origins Program, including the Space 
Interferometry Mission (SIM). IPEX-I1 was flown on the STS-85 
Shuttle Mission in August 1997, as a secondary payload mounted 
on the free-flying DARNDASA satellite pallet, ASTRO-SPAS. 
One  of the main objectives of this experiment is lo demonstrate 
and characterize the occurrence of impulsive microdynamic-level 
disturbances, as  a result of changes in the internal stress 
distribution of  a  structure with nonlinear frictional mechanisms. 

The IPEX-I1 deployed truss is a nine-bay truss structure that was 
launched in the fully deployed state. Truss longerons and battens 
are constructed of graphitekpoxy composite rods connected at 
stainless steel nodes and the diagonal elements are prestressed 
stainless steel cables. Because the  truss was launched in the 
deployed configuration, the pulley/latch mechanisms at the 
intersection of cable diagonals are locked. Total truss length is 
2337 mm  and total mass is 38.8 kg. Six interface support struts 
connect the truss to the  ASTRO-SPAS satellite pallet. The truss is 
instrumented with 22 accelerometers (1 6 on the truss and six in the 
interface struts), six load cells (in the interface struts), thermistors, 
and two proof-mass actuators located at  the truss free end for 
conducting on-orbit  system identification (Figure 1). Additional 
information on the IPEX-I1 experiment can be found in [3]. 

Figure 1 Instrumentation layout. 

model of the ASTRO-SPAS pallet to bring the total DOF count to 
6276. This is a preliminary model that  has not yet been 
correlated with the on-orbit system identification experiments, but 
this is planned as  a  future activity. 

A reduced-order model using Guyan reduction has been formed 
from the complete coupled model by retaining all the ASTRO- 
SPAS DOFs as well as translations at the corner nodes of the 
truss. The reduced model has 363  DOFs.  A summary of the 
full-order finite element modes below 100 Hz is given in Table 1. 
Using the accelerometer locations  shown in Figure 1,  the system 
is completely observable. Note that because the associated nodes 
have been condensed out during Guyan reduction, the  two 
accelerometers at diagonal pulley nodes are removed from the 
measurement set. 

Table 1 FE Modes for Coupled IPEX/ASTRO-SPAS Model 

Description Frequencies ' 
B: boom bending 
T: boom torsion 

(Full-order FE 
model ) 

B1 

28.21 TI 
18.37 B1 
12.53 

SPAS-Dominated modes 34.81 
(coupled with boom bending and 39.81 

torsion) 41.18 
48.47 

Diagonal cable drum modes 54.80 to 97.68 
(coupled with B & T and SPAS 

deformation) 

One possible source of microdynamic disturbances on-orbit is 
microslip at joints.  The sudden appearance and free vibration 
decay characteristic of  these events can be approximated in a 
simple way by the sudden release of the structure from a 
deformed shape. As an illustration of  the state estimator 
approach, the initial condition for the following simulations is 
arbitrarily chosen as a linear combination of the  mode  shapes  of 
the two modes at 39.81 and 41.18 Hz, modes which are ASTRO- 
SPAS dominated coupled with truss torsion and bending. The 
initial shape is then scaled so that the maximum displacement of 
any of the nodes on truss is 2.5E-6 meters, a value that is 
comparable with the actual measured on-orbit displacements. 
This initial deformed shape is shown in Figure 2. Although time 
histories are computed for all 363  DOFs in the model, only the 
responses at  the measurement DOFs are used in the state 
estimators. The unmeasured DOFs are used to assess the 
accuracy of  the state estimates. 

A coupled ASTRO-SPAS and truss structure finite element model 
was developed in UAQ WASTRAN. The  truss model is comprised 
of beam elements, plate elements, and lumped masses, and has 
B 289 elements and 5946  DOFs.  The model is a linearization of the 
truss about its preloaded configuration, and standard Euler- 
Bernoulli beam elements are used to represent the prestressed 
diagonal cables. The truss model is coupled to a reduced-order 



Figure  2 Initial deformed shape (amplified for emphasis). 

Deterministic Observer 
In the first set of simulations, we investigate the effect of 
lneasurcmcnt noise. In the second set of simulations, the 
measurements are noise-free, but systematic modeling errors in the 
finite element  are assumed. Simulations were made with two 
different observer  designs. In the fast observer, the observer 
eigenvalues were  made faster than the finite element model 
eigenvalues by a factor of two, and observer damping was 
increased to 55% of critical. The slow observer used poles 1.5 
times faster and 55% critical damping. Although these are not 
optimal eigenvalue locations i n  a rigorous sense, they were 
selected because they can be calculated accurately by MATLAB’s 
place function (some pole locations lead to numerical ill- 
conditioning) and they result in adequate performanee in the 
absence of noise. 

Realistic noise statistics for these  simulations were obtained from 
the actual IPEX flight data recordings. Root-mean-square noise 
levels of 24 pg to 41 pg were calculated, depending on the channel 
number, and were stationary throughout the time interval 
investigated. The noise is non-white, having distinct peaks in the 
I’SD at 9, 18, 27, 75, 150, 190, and 360 Hz. The noise signals 
obtained from the  flight  data were simply scaled by a constant 
value (0.10 for 10% noise, for example), then time-domain added 
to the simulated signals  at the measurement DOFs. No effort was 
made to adjust or align the phase of the noise with respect to the 
signal. 

The quality of the estimated states from both observers is 
summarized in Table  2. In that table, the displacement error is 
defined as  the true simulation displacements minus the 
displacements estimated from the observer at each node, squared, 
summed up along the simulation time, then summed across all 
nodes, to give  a  single mean-square number for  the entire structure. 
The relative error is the mean-square displacement error divided by 
the total mean-square displacement, so relative errors greater than 
one indicate extremely poor estimates. Low relative errors confirm 
the accuracy of both observers  for noise free measurements, with 
the fast observer performing marginally better. The high relative 
error as noise is added clearly show  the sensitivity to measurement 
noise. Not shown in the tabulated results is the very large 
overshoot that occurs in the first few time points of the estimate - 
the magnitude of which increases with increasing speed of the 

observer poles. For this reason, the  first thirty points of the 
estimated state vector have been ignored in computing  the error 
lcvcls shown in all tables. 

Table 2 Deterministic observer performance with perfect models. 

Fast 
Observer added  noise 

total disp (m’) 2.06E-08 2.06E-08 

163.7  40.9 1.94E-06 relative  error 
3.37E-06 8.44E-07 3.99E-13 disp  error (m’) 
2.06E-08 

0 20%  10% 

Slow 
Observer 

total disp (m’) 
disp  error (m’) 
relative  error 

added  noise 
10%  20% 

Table 3 Deterministic observer performance with imperfect 
model. 

Slow Observer 

total disp (m’) 
disp  error (m’) 
relative  error 

For the second simulations, the slow  observer  is used but a 
systematic modeling error is introduced into the simulation finite 
clement model. Specifically, the stiffness matrix Kaa is scaled 
by a constant value, either 1 . 1  or 1.9. This alters  the frequencies 
but leaves the eigenvectors unchanged. Whereas the factor of 1.1 
might represent a reasonable error in the model, the  1.9 scale 
factor is chosen to bring the  first  truss torsion mode  at  28.2 Hz up 
to 41 Hz. 111 this case, the initial condition used in the simulation 
and presented to the observer  is  the  truss torsion mode  shape  of 
the 41 Hz mode in the simulation model, which, at the 
lneasurcment DOFs, has a very similar shape to the 38 and 41 Hz 
modes of the original model and the observer. Thus, this  tests the 
ability of the observer to distinguish between modes of similar 
shapes at different frequencies. The results in Table  3 show the 
observer’s lack of robustness with respect to modeling errors. 

Kalman Filter 
The same two sets of  simulations were repeated with the Kalman 
filter and the results are reported in Tables  4 and 5. The very 
small errors in relative displacement indicate excellent filter 
performance, even in the presence of realistic noise that is non- 
white and correlated. 

Figure 3 shows the spectrum of displacements at measurement 
channel 6,  Iocated at approximately the mid-point of  the truss. 
The upper curve shows  the frequency-domain double-integrated 
values of the simulated acceleration signal contaminated by 100% 
noise levels. Note the peaks in the spectrum at  the noise 
frequencies of 9, 18, 27, and 75Hz, and especially 110w the low- 
frequency noise components are amplified by the integration 



process until they dominate the signal amplitudes. Compare this to 
the estimated displacements from the Kalman filter, which shows a 
broad-band reduction in noise and does not suffer from this 
phenomenon. 

A comparison of the estimated response and its associated error for 
an unmeasured DOF is shown in Figure 4 and Figure 5. This is a 
node located at the three-quarter point along the truss. The time 
behavior of the estimate shows the same smooth decay as the true 
state does, but the overshoot is clearly seen in the error signal 
(Figure 5). Estimated response of  the same unmeasured DOF to 
the same excitation is shown in Figure 6 for the Kalman filter 
based on the imperfect model. The quality of the estimate varies 
among the DOFs, but what is shown is representative, with errors 
in amplitude and other mismatches in waveform. 

Table 4 Performance of Kalman Filter with perfect model 

total  disp (111~) 
disp  error (In') 
relative error 

added noise 
10% 

6.22E-06  2.45E-07 6.49E-08 
1.07E-16  4.22E-18 1.12E-18 
1.73E-11  1.73E-11 1.73E-11 

100%  20% 

Table 5 Kalman Filter with imperfect model 

total  disp (m2) 
disp  error (m') 
relative  error 

10'"- 

x lo r  
I 

Figure 4 Estimated state predicted by the  Kalman  filter using a 
perfect model, at an unmeasured DOF. 
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Figure 5 Error in unmeasured estimated state  of  Figure 4. 
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Figure 3 Power spectral density functions of measurement channel 
6. 

Figure 6 Estimated state of Figure 4 using imperfect model 
( 1 . 1  Kaa). 



4. CONCLUSION 10. Brammer, K. and G. Siffling, "Kalman-Bucy Filters", Artech 
Simulation results show that with the current pole location House, 1989. 
technique, the deterministic observer  is  too sensitive to noise and 
therefore must be considered unsuitable for reliably expanding 
measured time histories. The Kalman filter is much less sensitive 
to noise and was able to make essentially error-free state estimates 
if given a perfect model of  the structure. 

Although it  could be argued that the modeling errors investigated 
here do not represent realistic finite element modeling errors, our 
results nevertheless show the desirablity, if not the need, for 
accurate finite element models. 

The overshoot at the start of  the estimated time histories obviously 
has negative implications for visualizing the deformed shape 
immcdiatley after a snap event, which was  one of the goals of this 
study. Potential solutions currently under investigation include 
running the filter backwards in time, and implementing the filter as 
a smoother, whereby the current estimate of the state is 
conditioned not just on the current measurement, but  all 
measurements, before and  after the current instant. 

The Kalman filter algorithm will next be  applied to the IPEX 
experimental data  to study transients that are associated with the 
tape recorder and occur at regular intervals. As confidence is 
increased and the approach  is fine-tuned, additional events in the 
measured data will be studied  in  an attempt to relate measured 
responses with source locations. 
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